Lecture 24: Signatures on Arbitrary-length Messages

A⊒ ▶ (⊒ ▶

∃⇒

- Suppose we are given a (Gen, Sign, Ver) digital signature scheme for *B*-bit messages (i.e., messages in {0,1}^B), for some fixed *B* ∈ N. We shall refer to this signature scheme as the basic signature scheme
- Given this signature scheme (Gen*, Sign*, Ver*) for *B*-bit messages, construct a signature scheme for <u>arbitrary-length</u> messages (i.e., messages in {0,1}*)

- Given a message m ∈ {0,1}*, we use standard padding technique to make its length a multiple of B and, then, break it into B-bit blocks (m₁, m₂,..., m_α), where m₁, m₂,..., m_α ∈ {0,1}^B
- Our first strategy is to sign the blocks m₁, m₂,..., m_α using the basic signature scheme. Suppose the signatures of m₁, m₂,..., m_α are, respectively, σ₁, σ₂,..., σ_α
- Our first attempt generates the signature of the message $m \equiv (m_1, m_2, \dots, m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{\alpha})$

- Suppose we are given the signature of the message $m = (m_1, m_2, ..., m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, ..., \sigma_{\alpha})$
- We can generate the signature of the message $m' = (m_1, m_2, \dots, m_i)$ as $\sigma' = (\sigma_1, \sigma_2, \dots, \sigma_i)$, for any $1 \leq i < \alpha$
- Solution. We need to tie the "number of the blocks" into the message being signed by the basic scheme

・ 同 ト ・ ヨ ト ・ ヨ ト

- Given a message $m \in \{0,1\}^*$, we use standard padding technique to make its length a multiple of B/2 and, then, break it into B/2-bit blocks $(m_1, m_2, \ldots, m_{\alpha})$, where $m_1, m_2, \ldots, m_{\alpha} \in \{0,1\}^{B/2}$
- Our second strategy is to sign the blocks

 (α||m₁), (α||m₂), ..., (α||m_α) using the basic signature scheme. We clarify that (α||m_i) is the concatenation of (a)
 B/2-bit representation of the number of total blocks α, and
 (b) the B/2-bit message m_i. Suppose the signatures are, respectively, σ₁, σ₂, ..., σ_α
- Our second attempt generates the signature of the message $m \equiv (m_1, m_2, \dots, m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{\alpha})$

- Suppose we are given the signature of the message $m = (m_1, m_2, ..., m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, ..., \sigma_{\alpha})$
- We can generate the signature of the message $m' = (m_2, m_1, \dots, m_{\alpha})$ as $\sigma' = (\sigma_2, \sigma_1, \dots, \sigma_{\alpha})$
- In general, we can permute the message blocks of *m* and generate the signature of the permuted message
- Solution. We need to tie the "position of the message block" into the message being signed by the basic scheme

Third Attempt

- Given a message $m \in \{0,1\}^*$, we use standard padding technique to make its length a multiple of B/3 and, then, break it into B/3-bit blocks $(m_1, m_2, \ldots, m_{\alpha})$, where $m_1, m_2, \ldots, m_{\alpha} \in \{0,1\}^{B/3}$
- Our second strategy is to sign the blocks

 (α||1||m₁), (α||2||m₂), ..., (α||α||m_α) using the basic signature scheme. We clarify that (α||m_i) is the concatenation of (a) B/3-bit representation of the number of total blocks α, (b) B/3-bit representation of the position *i*, and (c) the B/3-bit message m_i. Suppose the signatures are, respectively, σ₁, σ₂, ..., σ_α
- Our third attempt generates the signature of the message $m \equiv (m_1, m_2, \dots, m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{\alpha})$

Vulnerability: Splicing Attacks

- Suppose we are given the signature of the message $m = (m_1, m_2, ..., m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, ..., \sigma_{\alpha})$
- Suppose we are given the signature of another message (of the same number of blocks) m' = (m₁, m₂,..., m_α) as the signature σ' = (σ'₁, σ'₂,..., σ'_α)
- We can generate the signature of the message $m'' = (m'_1, m_2, \dots, m_{\alpha})$ as $\sigma'' = (\sigma'_1, \sigma_2, \dots, \sigma_{\alpha})$
- In general, we can splice the blocks of m and m' and generate the message m" and forge the signature on m"
- Solution. We need to "tie together all blocks of a particular message" into the message being signed by the basic scheme

イロト 不得 トイヨト イヨト 三日

Fourth Attempt

- Given a message m ∈ {0,1}*, we use standard padding technique to make its length a multiple of B/4 and, then, break it into B/4-bit blocks (m₁, m₂,..., m_α), where m₁, m₂,..., m_α ∈ {0,1}^{B/4}
- Pick a random string $s \stackrel{\$}{\leftarrow} \{0,1\}^{B/4}$
- Our second strategy is to sign the blocks

 (α||1||s||m₁), (α||2||s||m₂), ..., (α||α||s||m_α) using the basic signature scheme. We clarify that (α||m_i) is the concatenation of (a) B/4-bit representation of the number of total blocks α,
 (b) B/4-bit representation of the position i, (c) the random bit string s, and (d) the B/4-bit message m_i. Suppose the signatures are, respectively, σ₁, σ₂, ..., σ_α
- Our fourth attempt generates the signature of the message $m \equiv (m_1, m_2, \dots, m_{\alpha})$ as the signature $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_{\alpha})$.
- The idea is that all blocks of a message shall have the same random bit-string *s*. Furthermore, the bitstring corresponding to two messages shall be different with high probability (using the Birthday bound)

- The fourth attempt ensures that prefix, permutation, and splicing attacks cannot forge signatures
- In fact, this scheme is secure against <u>all forging strategies</u> (not just the three forging strategies mentioned above). In a higher-level course, we can prove this stronger result

It is left as an exercise to write the algorithms (Gen*, Sign*, Ver*) using the algorithms (Gen, Sign, Ver)